These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Valproic acid exposure decreases the mRNA stability of Bcl-2 via up-regulating miR-34a in the cerebellum of rat.
    Author: Dai X, Yin Y, Qin L.
    Journal: Neurosci Lett; 2017 Sep 14; 657():159-165. PubMed ID: 28803955.
    Abstract:
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, limited verbal communication and repetitive behaviors. Previous studies have shown that the level of Bcl-2 in the brain tissues of ASD patients is significantly decreased. However, the mechanisms underlie the down-regulation of Bcl-2 in ASD is still unknown. In this study, we investigated the alteration of Bcl-2 level and associated mechanisms in valproic acid (VPA) exposed ASD rats. VPA exposure resulted in ASD-like behaviors in rats, such as repetitive behavior and social interaction impairment. VPA exposure also down-regulated the expression of Bcl-2 both at mRNA and protein levels, either in cerebellar cortex or primary cerebellar cortical neuronal cells. Furthermore, VPA treatment decreased the mRNA stability of Bcl-2 instead of down-regulating its transcriptional activity. Meanwhile, VPA exposure up-regulated the expression of miR-34a in cerebellar cortex and primary cerebellar cortical neuronal cells. The mimics of miR-34a directly inhibited the expression of Bcl-2 and its antagonist blocked the down-regulation effect of VPA on Bcl-2 in primary cerebellar cortical neuronal cells. Our study implies that VPA may influence ASD through sequential up-regulating miR-34a and therefore down-regulating Bcl-2 in the brain tissues of rats.
    [Abstract] [Full Text] [Related] [New Search]