These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium via the c-Src Pathway.
    Author: Lee HM, Kang JH, Shin JM, Lee SA, Park IH.
    Journal: Mediators Inflamm; 2017; 2017():8123281. PubMed ID: 28804222.
    Abstract:
    Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-β1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-β1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-β1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-β1 on migration of A549 cells and suppressed TGF-β1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-β1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-β1 in upper airway chronic inflammatory disease such as CRS.
    [Abstract] [Full Text] [Related] [New Search]