These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanism of monensin-induced hyperpolarization of neuroblastoma-glioma hybrid NG108-15. Author: Lichtshtein D, Dunlop K, Kaback HR, Blume AJ. Journal: Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2580-4. PubMed ID: 288048. Abstract: Addition of the ionophore monensin to mouse neuroblastoma-rat glioma hybrid NG108-15 cells leads to a 20 to 30-mV increase in the electrical potential across the plasma membrane as shown by direct intracellular recording techniques and by distribution studies with the lipophilic cation [3H]-tetraphenylphosphonium+ (TPP+) [Lichtshtein, D., Kaback, H.R. & Blume, A.J. (1979) Proc. Natl. Acad. Sci. USA 76, 650-654]. The effect is not observed with cells suspended in high K+ medium, is dependent upon the presence of Na+ externally, and the concentration of monensin that induces half-maximal stimulation of TPP+ accumulation is approximately 1 microM. The ionophore also causes rapid influx of Na+, a transient increase in intracellular pH, and a decrease in extracellular pH, all of which are consistent with the known ability of monensin to catalyze the transmembrane exchange of H+ for Na+. Although ouabain has no immediate effect on the membrane potential, the cardiac glycoside completely blocks the increase in TPP+ accumulation observed in the presence of monensin. Thus, the hyperpolarizing effect of monensin is mediated apparently by an increase in intracellular Na+ that acts to stimulate the electrogenic activity of the Na+,K+-ATPase. Because monensin stimulates TPP+ accumulation in a number of other cultured cell lines in addition to NG108-15, the techniques described may be of general use for studying the Na+,K+ pump and its regulation in situ.[Abstract] [Full Text] [Related] [New Search]