These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proposed Empirical Entropy and Gibbs Energy Based on Observations of Scale Invariance in Open Nonequilibrium Systems.
    Author: Tuck AF.
    Journal: J Phys Chem A; 2017 Sep 07; 121(35):6620-6629. PubMed ID: 28805051.
    Abstract:
    There is no widely agreed definition of entropy, and consequently Gibbs energy, in open systems far from equilibrium. One recent approach has sought to formulate an entropy and Gibbs energy based on observed scale invariances in geophysical variables, particularly in atmospheric quantities, including the molecules constituting stratospheric chemistry. The Hamiltonian flux dynamics of energy in macroscopic open nonequilibrium systems maps to energy in equilibrium statistical thermodynamics, and corresponding equivalences of scale invariant variables with other relevant statistical mechanical variables such as entropy, Gibbs energy, and 1/(kBoltzmannT), are not just formally analogous but are also mappings. Three proof-of-concept representative examples from available adequate stratospheric chemistry observations-temperature, wind speed and ozone-are calculated, with the aim of applying these mappings and equivalences. Potential applications of the approach to scale invariant observations from the literature, involving scales from molecular through laboratory to astronomical, are considered. Theoretical support for the approach from the literature is discussed.
    [Abstract] [Full Text] [Related] [New Search]