These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of forage types on digestibility, methane emissions, and nitrogen utilization efficiency in two genotypes of hill ewes.
    Author: Zhao YG, Annett R, Yan T.
    Journal: J Anim Sci; 2017 Aug; 95(8):3762-3771. PubMed ID: 28805899.
    Abstract:
    Thirty-six nonpregnant hill ewes (18 pure Scottish Blackface and 18 Swaledale × Scottish Blackface) aged 18 mo and weighing 48 ± 4.8 kg were allocated to 3 forage treatments balanced for genotype and BW. Each genotype was offered 3 forages (pelleted ryegrass, fresh lowland grass, and fresh hill grass) ad libitum with 6 ewes for each of the 6 genotype × diet combination treatments. Pelleted ryegrass was sourced from a commercial supplier (Drygrass South Western Ltd, Burrington, UK). Fresh lowland grass was harvested daily in the morning from a third regrowth perennial ryegrass () sward. Fresh hill grass was harvested from a seminatural hill grassland every 2 d and stored in plastic bags at 4 to 5°C until offered. The animals were individually housed in pens and offered experimental diets for 14 d before being transferred to 6 individual respiration chambers for a further 4 d, during which feed intake, fecal and urine outputs, and CH emissions were measured. There was no interaction between genotype and forage types on any variable measured. In a comparison of effects of the 3 forages, pelleted ryegrass had the greatest ( < 0.001) values in DMI, GE intake, CH emissions, N intake (NI), and fecal N (FN), urine N (UN), and manure N (MN) outputs, whereas hill grass had the lowest ( < 0.001) values in DMI, energy (GE, DE, and ME) intake, CH emissions, NI, UN, and MN. However, pelleted ryegrass had the lowest ratio in CH emissions per unit DMI ( = 0.022) or GE intake ( = 0.026) or UN excretion as a proportion of NI or MN ( < 0.001). Lowland grass had a greater ( < 0.001) digestibility of DM, OM, CP, NDF, ADF, and GE and a greater ( < 0.001) ME:GE ratio or retained N:NI ratio than pelleted ryegrass and hill grass. Genotypes of sheep had no effect on any variable in feed intake, digestibility, CH emissions, or N utilization. The CH conversion factors (CH energy/GE) for pelleted ryegrass, lowland grass, and hill grass were 4.4, 5.7, and 5.6%, respectively. All data were then pooled to develop regression equations between CH and DMI or between N excretions (FN, UN, and MN) and NI. Methane emissions and N excretions were positively related to DMI and NI ( < 0.001), respectively. However, increasing DMI could reduce CH emissions per kilogram DMI. These equations add new information in predicting enteric CH emissions and N utilization efficiency and can be used to quantify the environmental footprint of hill sheep production systems.
    [Abstract] [Full Text] [Related] [New Search]