These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states. Author: Siletsky SA, Belevich I, Belevich NP, Soulimane T, Wikström M. Journal: Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):915-926. PubMed ID: 28807731. Abstract: Two electrogenic phases with characteristic times of ~14μs and ~290μs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba3 oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between CuA and heme b. The slow phase includes electron redistribution from both CuA and heme b to heme a3, and electrogenic proton transfer coupled to reduction of heme a3. The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a3 is reduced, but there is no proton pumping and no reduction of CuB. Single-electron reduction of the oxidized "unrelaxed" state (OH→EH transition) is accompanied by electrogenic reduction of the heme b/heme a3 pair by CuA in a "fast" phase (~22μs) and transfer of protons in "middle" and "slow" electrogenic phases (~0.185ms and ~0.78ms) coupled to electron redistribution from the heme b/heme a3 pair to the CuB site. The "middle" and "slow" electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach CuB the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~0.1 H+/e-, probably due to the formed membrane potential in the experiment.[Abstract] [Full Text] [Related] [New Search]