These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acrylamide-forming potential of cereals, legumes and roots and tubers analyzed by UPLC-UV. Author: Galani JHY, Patel NJ, Talati JG. Journal: Food Chem Toxicol; 2017 Oct; 108(Pt A):244-248. PubMed ID: 28811113. Abstract: For directing scientists, consumers, industry and stakeholders on mitigation strategies, there is a need to understand the acrylamide-forming potential of important Indian foods. Flour obtained from total 16 varieties of 9 Indian cereals, legumes and roots and tubers was heated at 160 °C for 20 min, acrylamide was extracted and quantified by UPLC-UV. Acrylamide level was above the European Commission indicative value in potato- and cereal-based food products, it ranged from 3436.13 to 5562.56 μg/kg in roots and tubers (potato and sweet potato). Among the cereals, maize (2195.31 μg/kg) and wheat (161.12 μg/kg) had the highest and lowest contents, respectively, whereas rice, sorghum and pearl millet showed intermediate values. Among the 2 legumes, soybean contained higher acrylamide (337.08-717.52 μg/kg) than chickpea (377.83-480.49 μg/kg). Analysis of variance revealed that roots and tubers acrylamide was highly significantly greater than the content in cereals (p < 0.0001) and in legumes (p < 0.0001) while there was no significant difference between cereals and legumes (p = 0.443). These results support the combination of pulses and minor cereals (chickpea, soybean, millets and sorghum) in cereal-based foods for improving the nutritional value and reducing acrylamide formation.[Abstract] [Full Text] [Related] [New Search]