These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A High-Fat Diet Decreases Bone Mass in Growing Mice with Systemic Chronic Inflammation Induced by Low-Dose, Slow-Release Lipopolysaccharide Pellets.
    Author: Cao JJ, Gregoire BR, Shen CL.
    Journal: J Nutr; 2017 Oct; 147(10):1909-1916. PubMed ID: 28814530.
    Abstract:
    Background: Chronic inflammation is associated with increased bone resorption and is linked to osteopenia, or low bone mass. Obesity is also associated with low-grade chronic upregulation of inflammatory cytokines.Objective: This study investigated the effect of high-fat (HF) diet-induced obesity on bone structure changes in growing mice with existing systemic chronic inflammation induced by low-dose, slow-release lipopolysaccharide (LPS).Methods: Forty-eight 6-wk-old female C57BL/6 mice were randomly assigned to 4 treatment groups (n = 12/group) in a 2 × 2 factorial design-control (placebo) or LPS treatment (1.5 μg/d)-and consumed either a normal-fat (NF, 10% of energy as fat) or an HF (45% of energy as fat) diet ad libitum for 13 wk. Bone structure, serum biomarkers of bone turnover, and osteoclast differentiation were measured.Results: No alterations were observed in final body weights, fat mass, or lean mass in response to LPS treatment. LPS treatment increased serum concentration of tartrate-resistant acid phosphatase (TRAP, a bone resorption marker) and bone marrow osteoclast differentiation and decreased femoral and lumbar vertebral bone volume (BV):total volume (TV) by 25% and 24%, respectively, compared with the placebo. Mice fed the HF diet had greater body weight at the end of the study (P < 0.01) due to increased fat mass (P < 0.01) than did mice fed the NF diet. The HF diet increased serum TRAP concentration, bone marrow osteoclast differentiation, and expression of tumor necrosis factor α, interleukin 1β and interleukin 6 in adipose tissue. Compared with the NF diet, the HF diet decreased BV:TV by 10% and 8% at femur and lumbar vertebrae, respectively, and the HF diet was detrimental to femoral and lumbar vertebral bone structure with decreased trabecular number and increased trabecular separation and structure model index.Conclusion: Results suggest that HF diets and systemic chronic inflammation have independent negative effects on bone structure in mice.
    [Abstract] [Full Text] [Related] [New Search]