These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endoplasmic Reticulum-Mitochondria Communication Through Ca2+ Signaling: The Importance of Mitochondria-Associated Membranes (MAMs). Author: Marchi S, Bittremieux M, Missiroli S, Morganti C, Patergnani S, Sbano L, Rimessi A, Kerkhofs M, Parys JB, Bultynck G, Giorgi C, Pinton P. Journal: Adv Exp Med Biol; 2017; 997():49-67. PubMed ID: 28815521. Abstract: The execution of proper Ca2+ signaling requires close apposition between the endoplasmic reticulum (ER) and mitochondria. Hence, Ca2+ released from the ER is "quasi-synaptically" transferred to mitochondrial matrix, where Ca2+ stimulates mitochondrial ATP synthesis by activating the tricarboxylic acid (TCA) cycle. However, when the Ca2+ transfer is excessive and sustained, mitochondrial Ca2+ overload induces apoptosis by opening the mitochondrial permeability transition pore. A large number of regulatory proteins reside at mitochondria-associated ER membranes (MAMs) to maintain the optimal distance between the organelles and to coordinate the functionality of both ER and mitochondrial Ca2+ transporters or channels. In this chapter, we discuss the different pathways involved in the regulation of ER-mitochondria Ca2+ flux and describe the activities of the various Ca2+ players based on their primary intra-organelle localization.[Abstract] [Full Text] [Related] [New Search]