These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of the ability of seven gonadotropin preparations from different mammalian sources to interact with the adenylyl cyclase system in corpora lutea from rabbits and rats.
    Author: Sigafoos JF, Abramowitz J.
    Journal: Comp Biochem Physiol A Comp Physiol; 1987; 86(3):453-60. PubMed ID: 2881686.
    Abstract:
    The effects of guanine nucleotides and magnesium (Mg2+) on the interaction of seven different gonadotropin preparations with their rabbit and rat luteal receptors were studied and compared to the ability of these gonadotropins to stimulate luteal adenylyl cyclase activity. In both the rabbit and rat, human chorionic gonadotropin (hCG) and human luteinizing hormone (hLH) were less efficacious than the other gonadotropin preparations in stimulating luteal adenylyl cyclase activity and thus behaved as partial agonists. Addition of 2 mM MgCl2 increased the affinity of the rat luteal receptors for all seven gonadotropins tested, while in the rabbit Mg2+ increased the affinities for porcine, bovine, ovine, rat and rabbit LH but did not significantly alter the affinities for hCG or hLH. In no instance did the addition of 100 microM GTP alter the affinity of the receptor from that observed in the absence or presence of Mg2+. A positive correlation existed for both species between the Kd values calculated from binding experiments and the Kact values obtained in adenylyl cyclase assays suggesting that the specific gonadotropin-binding sites present in rabbit and rat luteal membranes represent receptors which mediate the stimulatory effect of LH. The magnitude of the Mg2+-induced increase in affinity of a given gonadotropin preparation for its receptor was correlated with the efficacy with which that gonadotropin stimulated luteal adenylyl cyclase activity in both the rabbit and rat.
    [Abstract] [Full Text] [Related] [New Search]