These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TGF-β1 is Involved in Vitamin D-Induced Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Regulating the ERK/JNK Pathway. Author: Jiang X, Huang B, Yang H, Li G, Zhang C, Yang G, Lin F, Lin G. Journal: Cell Physiol Biochem; 2017; 42(6):2230-2241. PubMed ID: 28817810. Abstract: BACKGROUND/AIMS: Osteoarthritis (OA) is characterized by degradation of cartilage, sole cell type of which is chondrocytes. Bone marrow-derived mesenchymal stem cells (BMSCs) possess multipotency and can be directionally differentiated into chondrocytes under stimulation. This study was aimed to explore the possible roles of vitamin D and transforming growth factor-β1 (TGF-β1) in the chondrogenic differentiation of BMSCs. METHODS: BMSCs were isolated from femurs and tibias of rats and characterized by flow cytometry. After stimulation with vitamin D, BMSC proliferation and migration were measured by Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. Chondrogenic differentiation was estimated through expression levels of specific markers by qRT-PCR and Western blot analysis. After stable transfection, the effects of aberrantly expressed TGF-β1 on vitamin D-induced alterations, including BMSC viability, migration and chondrogenic differentiation, were all evaluated utilizing CCK-8 assay, Transwell assay, qRT-PCR and Western blot analysis. Finally, the phosphorylation levels of key kinases in the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) pathways were determined by Western blot analysis. RESULTS: Vitamin D remarkably promoted BMSC viability, migration and chondrogenic differentiation. These alterations of BMSCs induced by vitamin D were reinforced by TGF-β1 overexpression while were reversed by TGF-β1 silencing. Additionally, the phosphorylation levels of ERK, JNK and c-Jun were enhanced by TGF-β1 overexpression but were reduced by TGF-β1 knockdown. CONCLUSION: Vitamin D promoted BMSC proliferation, migration and chondrogenic differentiation. TGF-β1 might be implicated in the vitamin D-induced alterations of BMSCs through regulating ERK/JNK pathway.[Abstract] [Full Text] [Related] [New Search]