These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The modulation of the phosphorylation status of NKCC1 in organ cultured bovine lenses: Implications for the regulation of fiber cell and overall lens volume. Author: Vorontsova I, Donaldson PJ, Kong Z, Wickremesinghe C, Lam L, Lim JC. Journal: Exp Eye Res; 2017 Dec; 165():164-174. PubMed ID: 28818393. Abstract: In previous work, we have shown the Sodium/Potassium/2 Chloride Cotransporter (NKCC1) to be a key effector of lens fiber cell volume regulation. Since others have shown that the activity of NKCC1 is regulated via its phosphorylation status, the purpose of this study was to investigate whether NKCC1 phosphorylation can be modulated in organ cultured bovine lenses, and to see how this relates to changes in lens wet weight. Western blotting was first used to confirm the expression of NKCC1, phosphorylated NKCC1 (NKCC1-P) and the regulatory kinases WNK/SPAK and phosphatases PP1/PP2A in bovine lenses at the protein level. Changes to NKCC1-P status were then assessed by organ culturing bovine lenses in either isotonic, hypertonic or hypotonic solutions in the presence or absence of the NKCC inhibitor, bumetanide, or phosphatase inhibitors okadaic acid and calyculin A. After 1-22 h of culturing, lenses were weighed, assessed for transparency and the cortical protein fractions analyzed by western blot using antibodies to detect total NKCC1 and NKCC1-P. NKCC1, NKCC1-P, SPAK, PP1 and PP2A were all detected in the membrane fraction of bovine lenses. Under hypertonic conditions, NKCC1 is phosphorylated and activated to mediate a regulatory volume increase. Finally, NKCC1-P signal increased in the presence of phosphatase inhibitors indicating that PP1/PP2A can dephosphorylate NKCC1. These results show that the phosphorylation status and hence activity of NKCC1 is dynamically regulated and that in response to hypertonic stress, NKCC1 activity is increased to effect a regulatory volume increase that limits cell shrinkage. These findings support the view that the lens dynamically regulates ion fluxes to maintain steady state lens volume, and suggest that dysfunction of this regulation maybe an initiating factor in the localized fiber cell swelling that is a characteristic of diabetic lens cataract.[Abstract] [Full Text] [Related] [New Search]