These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Growth hormone secretion from chicken adenohypophyseal cells in primary culture: effects of human pancreatic growth hormone-releasing factor, thyrotropin-releasing hormone, and somatostatin on growth hormone release. Author: Perez FM, Malamed S, Scanes CG. Journal: Gen Comp Endocrinol; 1987 Mar; 65(3):408-14. PubMed ID: 2881841. Abstract: A primary culture of chicken adenohypophyseal cells has been developed to study the regulation of growth hormone (GH) secretion. Following collagenase dispersion, cells were exposed for 2 hr to vehicle (control) or test agents. Human pancreatic (tumor) growth hormone-releasing factor (hpGRF) and rat hypothalamic growth hormone-releasing factor stimulated GH release to similar levels. GH release was increased by the presence of dibutyryl cyclic AMP. Thyrotropin-releasing hormone (TRH) alone did not influence GH release; however, TRH plus hpGRF together exerted a synergistic (greater than additive) effect, increasing GH release by 100 to 300% over the sum of the values for each secretagogue acting alone. These relationships between TRH and hpGRF were further examined in cultured cells exposed to secretagogues for two consecutive 2-hr incubations. TRH pretreatment enhanced subsequent hpGRF-stimulated GH release by about 80% over that obtained if no secretagogue was present during the first incubation. In other experiments, somatostatin (SRIF) alone did not alter GH secretion. However, SRIF reduced hpGRF-stimulated GH release to levels found in controls. Furthermore, GH release stimulated by the presence of both TRH and hpGRF was lowered to control values by SRIF. The results of these studies demonstrate that a primary culture of chicken adenohypophyseal cells is a useful model for the study of GH secretion. Indeed, these results suggest that TRH and hpGRF regulate GH secretion by mechanisms which are not identical.[Abstract] [Full Text] [Related] [New Search]