These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ethyl pyruvate does not require microglia for mediating neuroprotection after excitotoxic injury.
    Author: Pieroh P, Wagner DC, Ghadban C, Birkenmeier G, Dehghani F.
    Journal: CNS Neurosci Ther; 2017 Oct; 23(10):798-807. PubMed ID: 28836378.
    Abstract:
    AIMS: Ethyl pyruvate (EP) mediates protective effects after neuronal injury. Besides a direct conservation of damaged neurons, the modulation of indigenous glial cells has been suggested as one important mechanism for EP-related neuroprotection. However, the specific contribution of glial cells is still unknown. METHODS: Organotypic hippocampal slice cultures (OHSC) were excitotoxically lesioned by 50 μmol/L N-methyl-D-aspartate (NMDA, for 4 hours) or left untreated. In an additional OHSC subset, microglia was depleted using the bisphosphonate clodronate (100 μg/mL) before lesion. After removal of NMDA, EP containing culture medium (0.84 μmol/L, 8.4 μmol/L, 42 μmol/L, 84 μmol/L, 168 μmol/L) was added and incubated for 72 hours. OHSC were stained with propidium iodide to visualize degenerating neurons and isolectin IB4 -FITC to identify microglia. Effects of EP at concentrations of 0.84, 8.4, and 84 μmol/L (0-48 hours) were analyzed in the astrocytic scratch wound assay. RESULTS: EP significantly reduced neurodegeneration following induced excitotoxicity except for 168 μmol/L. For 84 μmol/L, a reduction in the microglia cells was observed. Microglia depletion did not affect neuronal survival after EP treatment. EP decelerated astrocytic wound closure at 48 hours after injury. CONCLUSION: EP-mediated neuroprotection seems to be mediated by astrocytes and/or neurons.
    [Abstract] [Full Text] [Related] [New Search]