These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Co-Spray Dried Mannitol/Poly(amidoamine)-Doxorubicin Dry-Powder Inhaler Formulations for Lung Adenocarcinoma: Morphology, In Vitro Evaluation, and Aerodynamic Performance. Author: Zhong Q. Journal: AAPS PharmSciTech; 2018 Feb; 19(2):531-540. PubMed ID: 28840529. Abstract: nhaled chemotherapeutics have emerged as a promising regimen to combat lung cancer as they maximize local drug concentration while significantly reduce systemic exposure. However, the poor lung/systemic safety profiles and lack of clinically efficient formulations restrict the applicability of inhaled chemotherapeutics. This work developed a dry-powder inhaler (DPI) formulation that dispersed a pH-responsive poly(amidoamine) dendrimer-doxorubicin conjugate (G4-12DOX) into mannitol microparticles. The dendrimer conjugate only releases cytotoxic agents in response to intracellular pH drop, leading to reduced systemic and local toxicity. This work investigated the effect of G4-12DOX content on the microparticle size and morphology, redispersibility, in vitro cytotoxicity, and aerosol properties of the formulations. The spray-dried G4-12DOX/mannitol microparticles showed smooth and spherical morphology with 1-4 μm in diameter. As the content of the G4-12DOX conjugate in the microparticles increased, the size, and degree of aggregation of microparticles increased dramatically. The G4-12DOX/mannitol microparticles were readily redispersed in the aqueous environment, reverting to nanoscale dendrimer conjugates to escape alveolar phagocytosis. All DPI formulations demonstrated the similar cytotoxicity as the original conjugate against a lung adenocarcinoma cell line. The emitted dose (ED) and fine particle fraction (FPF) of the DPI formulations decreased as the content of G4-12DOX increased, but EDs and FPFs of all formulations fell within the range of 85-60% and 60-40%, which were higher than those of commercial products (EDs = 40-60%; FPFs = 12-40%). Therefore, the spray-dried dendrimer/mannitol microparticle is an efficient and practical DPI formulation for direct delivery of large dose of chemotherapeutics to lung tumors.[Abstract] [Full Text] [Related] [New Search]