These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: N-Acetylcysteine Prevents the Increase in Spontaneous Oxidation of Dopamine During Monoamine Oxidase Inhibition in PC12 Cells. Author: Goldstein DS, Jinsmaa Y, Sullivan P, Sharabi Y. Journal: Neurochem Res; 2017 Nov; 42(11):3289-3295. PubMed ID: 28840582. Abstract: The catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease proposes that the deaminated dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is toxic to nigrostriatal dopaminergic neurons. Inhibiting monoamine oxidase (MAO) should therefore slow the disease progression; however, MAO inhibition increases spontaneous oxidation of dopamine, as indicated by increased 5-S-cysteinyl-dopamine (Cys-DA) levels, and the oxidation products may also be toxic. This study examined whether N-acetylcysteine (NAC), a precursor of the anti-oxidant glutathione, attenuates the increase in Cys-DA production during MAO inhibition. Rat pheochromocytoma PC12 cells were incubated with NAC, the MAO-B inhibitor selegiline, or both. Selegiline decreased DOPAL and increased Cys-DA levels (p < 0.0001 each). Co-incubation of NAC at pharmacologically relevant concentrations (1-10 µM) with selegiline (1 µM) attenuated or prevented the Cys-DA response to selegiline, without interfering with the selegiline-induced decrease in DOPAL production or inhibiting tyrosine hydroxylation. NAC therefore mitigates the increase in spontaneous oxidation of dopamine during MAO inhibition.[Abstract] [Full Text] [Related] [New Search]