These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of Huaier On the Proliferation of Mesangial Cells in Anti-Thy-1 Nephritis. Author: Bai J, Geng W, Mei Y, Wu L, Duan S, Dong Z, Fu B, Wang Y, Zhu F, Cai G, Feng Z, Lin S, Chen X. Journal: Cell Physiol Biochem; 2017; 42(6):2441-2452. PubMed ID: 28848114. Abstract: BACKGROUND/AIMS: To determine whether an aqueous extract of Trametes robiniophila Murr. (Huaier) suppresses anti-Thy-1 mesangial proliferative glomerulonephritis (MsPGN) in vivo and platelet-derived growth factor (PDGF)-BB-induced mesangial cell proliferation in vitro. METHODS: Male Wistar rats were randomly categorized into 5 groups: Sham, Thy-1, and 3 Huaier-treated groups (low, medium, and high dose). Two weeks after treatment, urinary proteins were quantified and renal pathological changes were examined. MAX interactor 1 (Mxi-1) and proliferating cell nuclear antigen (PCNA) expression levels in isolated glomeruli, rat mesangial cell viability, cell-cycle distribution, and cell-cycle pathways were assessed. RESULTS: Huaier diminished the proliferative damages and urinary protein secretion in Thy-1 rats. PCNA was downregulated, whereas Mxi-1 was upregulated in the isolated glomeruli of Huaier-treated groups compared with the Thy-1 group. Huaier inhibited PDGF-BB- stimulated proliferation of rat mesangial cells in a time- and dose-dependent manner (50% inhibitory concentration = 6.19 mg/mL) and induced G2 cell-cycle arrest. Cell-cycle pathway proteins were downregulated, whereas Mxi-1 was upregulated in Huaier-treated mesangial cells compared with PDGF-BB-stimulated cells. CONCLUSION: Huaier reduces urinary protein excretion and relieves hyperplasia in mesangial cells in anti-Thy-1 MsPGN as well as inhibits PDGF-BB-stimulated proliferation and DNA synthesis of rat mesangial cells in vitro, suggesting its novel therapeutic potential in MsPGN.[Abstract] [Full Text] [Related] [New Search]