These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective Effects of An Water Extracts Prepared from Loliolus beka Gray Meat Against H2O2-Induced Oxidative Stress in Chang Liver Cells and Zebrafish Embryo Model.
    Author: Han EJ, Um JH, Kim EA, Lee W, Kang N, Oh JY, Park SY, Jeon YJ, Ahn CB, Lee SH, Ahn G.
    Journal: Adv Exp Med Biol; 2017; 975 Pt 1():585-601. PubMed ID: 28849484.
    Abstract:
    In this study, we first evaluated protective effects of Loliolus beka in a human liver cell line and zebrafish embryo model with its anti-oxidant activity. First, we prepared the water extract from L. beka meat (LBMW) at room temperature for 24 h and revealed it consisted of a rich taurine. LBMW exhibited the scavenging effects against 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and hydrogen peroxide (H2O2) as well as the high value of oxygen radical absorbance capacity (ORAC). Also, the hydroxyl radical-induced DNA damage was dose-dependently reduced by the treatment of LBMW. In addition, LBMW showed no cytotoxicity and reduced the production of reactive oxygen species (ROS) in H2O2-treated hepatocytes. Moreover, LBMW regulated the expression of an anti-apoptotic molecule, Bcl-2 and the expression of pro-apoptotic molecules, Bax and PARP in H2O2-treated hepatocytes as well as the increment of antioxidant mediated-HO-1 and Nrf2 protein expression. In further study, LBMW improved the survival rate and decreased the production of ROS in H2O2-treated zebrafish embryo model. Therefore, our results suggest that Loliolus beka has protective effects against H2O2-induced oxidative stress and may be used as a potential source for functional foods.
    [Abstract] [Full Text] [Related] [New Search]