These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Monodisperse Au-Fe2C Janus Nanoparticles: An Attractive Multifunctional Material for Triple-Modal Imaging-Guided Tumor Photothermal Therapy. Author: Ju Y, Zhang H, Yu J, Tong S, Tian N, Wang Z, Wang X, Su X, Chu X, Lin J, Ding Y, Li G, Sheng F, Hou Y. Journal: ACS Nano; 2017 Sep 26; 11(9):9239-9248. PubMed ID: 28850218. Abstract: Imaging-guided photothermal therapy (PTT) by combination of imaging and PTT has been emerging as a promising therapeutic method for precision therapy. However, the development of multicomponent nanoplatforms with stable structures for both PTT and multiple-model imaging remains a great challenge. Herein, we synthesized monodisperse Au-Fe2C Janus nanoparticles (JNPs) of 12 nm, which are multifunctional entities for cancer theranostics. Due to the broad absorption in the near-infrared range, Au-Fe2C JNPs showed a significant photothermal effect with a 30.2% calculated photothermal transduction efficiency under 808 nm laser irradiation in vitro. Owing to their excellent optical and magnetic properties, Au-Fe2C JNPs were demonstrated to be advantageous agents for triple-modal magnetic resonance imaging (MRI)/multispectral photoacoustic tomography (MSOT)/computed tomography (CT) both in vitro and in vivo. We found that Au-Fe2C JNPs conjugated with the affibody (Au-Fe2C-ZHER2:342) have more accumulation and deeper penetration in tumor sites than nontargeting JNPs (Au-Fe2C-PEG) in vivo. Meanwhile, our results verified that Au-Fe2C-ZHER2:342 JNPs can selectively target tumor cells with low cytotoxicity and ablate tumor tissues effectively in a mouse model. In summary, monodisperse Au-Fe2C JNPs, used as a multifunctional nanoplatform, allow the combination of multiple-model imaging techniques and high therapeutic efficacy and have great potential for precision theranostic nanomedicines.[Abstract] [Full Text] [Related] [New Search]