These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Construction of a highly sensitive signal-on aptasensor based on gold nanoparticles/functionalized silica nanoparticles for selective detection of tryptophan.
    Author: Hashkavayi AB, Raoof JB, Ojani R.
    Journal: Anal Bioanal Chem; 2017 Nov; 409(27):6429-6438. PubMed ID: 28852807.
    Abstract:
    In this work, a highly sensitive, low-cost, and label-free aptasensor based on signal-on mechanisms of response was developed by immobilizing the aptamer on gold nanoparticles (AuNPs)/amine-functionalized silica nanoparticle (FSN)/screen-printed electrode (SPE) surface for highly selective electrochemical detection of tryptophan (Trp). The hemin (Hem), which interacted with the guanine bases of the aptamer, worked as a redox indicator to generate a readable electrochemical signal. The changes in the charge transfer resistance have been monitored using the voltammetry and electrochemical impedance spectroscopic (EIS) techniques. The peak current of Hem linearly increased with increasing concentration of Trp, in differential pulse voltammetry, from 0.06 to 250 nM with a detection limit of 0.026 nM. Also, the results obtained from EIS studies showed that the Trp was detected sensitively with the fabricated aptasensor in the range of 0.06-250 nM. The detection limit is 0.01 nM, much lower than that obtained by most of the reported electrochemical methods. The usage of aptamer as a recognition layer led to a sensor with high affinity for Trp, compared with control amino acids of tyrosine, histidine, arginine, lysine, valine, and methionine. The usability of the aptasensor was successfully evaluated by the determination of Trp in a human blood serum sample. Thus, the sensor could provide a promising plan for the construction of aptasensors. Graphical abstract Schematic outline the principle for tryptophan aptasensing.
    [Abstract] [Full Text] [Related] [New Search]