These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of dextran-grafted hydrophobic charge-induction resins: Structural properties, protein adsorption and transport.
    Author: Liu T, Angelo JM, Lin DQ, Lenhoff AM, Yao SJ.
    Journal: J Chromatogr A; 2017 Sep 29; 1517():44-53. PubMed ID: 28855091.
    Abstract:
    The structural and functional properties of a series of dextran-grafted and non-grafted hydrophobic charge-induction chromatographic (HCIC) agarose resins were characterized by macroscopic and microscopic techniques. The effects of dextran grafting and mobile phase conditions on the pore dimensions of the resins were investigated with inverse size exclusion chromatography (ISEC). A significantly lower pore radius (17.6nm) was found for dextran-grafted than non-grafted resins (29.5nm), but increased salt concentration would narrow the gap between the respective pore radii. Two proteins, human immunoglobulin G (hIgG) and bovine serum albumin (BSA), were used to examine the effect of protein characteristics. The results of adsorption isotherms showed that the dextran-grafted resin with high ligand density had substantially higher adsorption capacity and enhanced the salt-tolerance property for hIgG, but displayed a significantly smaller benefit for BSA adsorption. Confocal laser scanning microscopy (CLSM) showed that hIgG presented more diffuse and slower moving adsorption front compared to BSA during uptake into the resins because of the selective binding of multiple species from polyclonal IgG; polymer-grafting with high ligand density could enhance the rate of hIgG transport in the dextran-grafted resins without salt addition, but not for the case with high salt and BSA. The results indicate that microscopic analysis using ISEC and CLSM is useful to improve the mechanistic understanding of resin structure and of critical functional parameters involving protein adsorption and transport, which would guide the rational design of new resins and processes.
    [Abstract] [Full Text] [Related] [New Search]