These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using MWCNTs-Pdnano/PTCA/aptamer as labeled aptamer for the signal amplification. Author: Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S. Journal: Anal Chim Acta; 2017 Sep 08; 985():61-68. PubMed ID: 28864195. Abstract: In this research, we demonstrated a flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblasts (CCRF-CEM) based on poly(3,4-ethylenedioxythiophene) decorated with gold nanoparticles (PEDOT-Aunano) as a nano platform to immobilize thiolated sgc8c aptamer and multiwall carbon nanotubes decorated with palladium nanoparticles/3,4,9,10-perylene tetracarboxylic acid (MWCNTs-Pdnano/PTCA) to fabricate catalytic labeled aptamer. In the proposed sensing strategy, the CCRF-CEM cancer cells were sandwiched between immobilized sgc8c aptamer on PEDOT-Aunano modified surface electrode and catalytic labeled sgc8c aptamer (MWCNTs-Pdnano/PTCA/aptamer). After that, the concentration of CCRF-CEM cancer cells was determined in presence of 0.1 mM hydrogen peroxide (H2O2) as an electroactive component. The attached MWCNTs-Pdnano nanocomposites to CCRF-CEM cancer cells amplified the electrocatalytic reduction of H2O2 and improved the sensitivity of the sensor to CCRF-CEM cancer cells. The MWCNT-Pdnano nanocomposite was characterized with transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). The electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to confirm the stepwise changes in the electrochemical surface properties of the electrode. The proposed sandwich-type electrochemical aptasensor exhibited an excellent analytical performance for the detection of CCRF-CEM cancer cells ranging from 1.0 × 101 to 5.0 × 105 cells mL-1. The limit of detection was 8 cells mL-1. The proposed aptasensor showed high selectivity toward CCRF-CEM cancer cells. The proposed aptasensor was also applied to the determination of CCRF-CEM cancer cells in human serum samples.[Abstract] [Full Text] [Related] [New Search]