These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source. Author: Liu J, Yuan Y, Li B, Zhang Q, Wu L, Li X, Peng Y. Journal: Bioresour Technol; 2017 Nov; 244(Pt 1):1158-1165. PubMed ID: 28869122. Abstract: An anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) using sludge fermentation products as carbon source was developed to enhance nitrogen and phosphorus removal in municipal wastewater with low C/N ratio (<4) and reduce sludge production. The AOA-SBR achieved simultaneous partial nitrification and denitrification (SND), aerobic phosphorus uptake and anoxic denitrification through the real-time control and the addition of sludge fermentation products. The average removal efficiencies of total nitrogen (TN), phosphorus (PO43--P) and chemical oxygen demand (COD) after 145-day operation were 88.8%, 99.3% and 81.2%, respectively. Nitrite accumulation ratio (NAR) reached 99.1% and sludge reduction rate reached 44.1-52.1%. Specifically, 34.4% of the TN removal was carried out by SND and 57.5% by denitrification. Illumina MiSeq sequencing indicated that ammonium-oxidizing bacteria (Nitrosomonas) were enriched and nitrite-oxidizing bacteria (Nitrospira) did not exist in AOA-SBR. The system demonstrated potential to solve the dual problem of insufficient carbon source and sludge reduction.[Abstract] [Full Text] [Related] [New Search]