These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reactive oxygen species trigger NF-κB-mediated NLRP3 inflammasome activation induced by zinc oxide nanoparticles in A549 cells. Author: Liang X, Zhang D, Liu W, Yan Y, Zhou F, Wu W, Yan Z. Journal: Toxicol Ind Health; 2017 Oct; 33(10):737-745. PubMed ID: 28870124. Abstract: Inhaled zinc oxide nanoparticles (ZnO-NPs) induce lung inflammation associated with oxidative stress. The NLRP3 inflammasome plays a pivotal role in the development of lung inflammation. However, the underlying effects of the NLRP3 inflammasome on ZnO-NPs-induced inflammation remain obscure. In the present study, reactive oxygen species (ROS) generation, expression of NLRP3, caspase-1 p10, and cytokines release of interleukin (IL)-1β and IL-18 were determined after A549 cells were exposed to ZnO-NPs. The ROS scavenger N-acetyl-L-cysteine (NAC), nuclear factor kappa B (NF-κB inhibitor BAY11-7082, and NLRP3 inhibitor glibenclamide (GEL) were used to explore the mechanism of NLRP3 inflammasome activation-induced by ZnO-NPs. ZnO-NPs stimulation induced ROS generation and NF-κB p65 phosphorylation. Similarly, the expression of NLRP3 and caspase-1 p10 and the release of IL-1β and IL-18 were significantly increased after ZnO-NPs treatment, which indicated that the NLRP3 inflammasome was activated by ZnO-NPs. Meanwhile, NAC pretreatment inhibited ZnO-NPs-induced activation of NF-κB and NLRP3 inflammasome. The NF-κB inhibitor BAY11-7082 did not affect ROS production but significantly reduced the NLRP3 inflammasome activation induced by ZnO-NPs. Furthermore, the ability of ZnO-NPs to increase the production of IL-1β and IL-18 was significantly inhibited by GEL. The ZnO-NPs induced the activation of the NLRP3 inflammasome in A549 cells, which might be via a ROS-NF-κB-NLRP3 signaling pathway.[Abstract] [Full Text] [Related] [New Search]