These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Excitatory amino acid-induced release of 3H-GABA from cultured mouse cerebral cortex interneurons. Author: Drejer J, Honoré T, Schousboe A. Journal: J Neurosci; 1987 Sep; 7(9):2910-6. PubMed ID: 2887645. Abstract: A newly developed continuous superfusion model was used for studies of 3H-GABA release from cultured mouse cerebral cortex neurons. It was found that a series of excitatory amino acids (EAAs) representing all receptor subtypes evoked Ca2+- dependent release of 3H-GABA from the neurons. Quisqualate was the most potent agonist tested, with an EC50 value of 75 nM. L-Glutamate, N-methyl-D-aspartate (NMDA), and kainate showed EC50 values of 12, 16 and 29 microM, respectively. The EAA-evoked 3H-GABA release could be blocked by a series of EAA antagonists. The highly selective NMDA antagonist D-2-amino-5-phosphonovaleric acid (D-APV) was found to block NMDA responses, whereas the nonselective antagonists cis-2,3-piperidine dicarboxylic acid (PDA) and gamma-D-glutamyl-aminomethyl sulphonic acid (GAMS) blocked responses to all agonists. NMDA responses were found to be sensitive to Mg+ blockade. EAA- as well as potassium-induced 3H-GABA release from the neurons could be detected as early as day 5 in culture. However, during the culture period up to 12 d, the responses to K+, quisqualate, and NMDA were increased. The ontogenetic development of binding sites for quisqualate, kainate, and NMDA in mouse cortex was studied using the radioligands 3H-alpha-amino-3-hydroxy-5-methyl-4-isoxasole propionate (3H-AMPA), 3H-kainate, and 3H-L-glutamate, respectively. The development of binding sites for the different EAA-receptor subtypes showed a good correlation with the development of neuronal 3H-GABA release evoked by the excitatory amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]