These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Degradation of Acid Orange 7 using peroxymonosulfate catalyzed by granulated activated carbon and enhanced by electrolysis. Author: Li J, Lin H, Zhu K, Zhang H. Journal: Chemosphere; 2017 Dec; 188():139-147. PubMed ID: 28881241. Abstract: Electrochemistry coupled with granulated activated carbon catalysis of peroxymonosulfate (electro/GAC/PMS) as a novel wastewater treatment process was performed for the degradation of Acid Orange 7 (AO7) in aqueous solution. The decolorization of AO7 was compared under different permutations and combinations of electro-oxidation, GAC and PMS. It showed that the electro/GAC/PMS process was the most effective and the decolorization of AO7 followed pseudo-first order kinetics. The surface chemistry of GAC samples was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Compared with the fresh samples, π-electron density and hydroxyl group content decreased under the GAC/PMS system, but kept the similar values under the electro/GAC/PMS system. Electron paramagnetic resonance and radical scavenger studies were used to verify the formation of sulfate radicals (SO4-) and hydroxyl radicals (OH). The optimized conditions were found to be: current density 8 mA cm-2; PMS concentration 5 mM; GAC dosage 0.5 g L-1; and initial pH value 5.0. GAC recycling experiments over 4 runs showed some decrease in reactivity. Overall, the results indicate that 100% color removal was readily achieved and 50.4% of TOC was removed which shows high efficiency of the electro/GAC/PMS process.[Abstract] [Full Text] [Related] [New Search]