These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer.
    Author: Shin Y, Kim ST, Kim K, Kim MY, Oh S, Jeong JK.
    Journal: Sci Rep; 2017 Sep 07; 7(1):10885. PubMed ID: 28883475.
    Abstract:
    High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm2/V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm2/V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes.
    [Abstract] [Full Text] [Related] [New Search]