These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Massive Protein Import into the Early-Evolutionary-Stage Photosynthetic Organelle of the Amoeba Paulinella chromatophora.
    Author: Singer A, Poschmann G, Mühlich C, Valadez-Cano C, Hänsch S, Hüren V, Rensing SA, Stühler K, Nowack ECM.
    Journal: Curr Biol; 2017 Sep 25; 27(18):2763-2773.e5. PubMed ID: 28889978.
    Abstract:
    The endosymbiotic acquisition of mitochondria and plastids more than 1 Ga ago profoundly impacted eukaryote evolution. At the heart of understanding organelle evolution is the re-arrangement of the endosymbiont proteome into a host-controlled organellar proteome. However, early stages in this process as well as the timing of events that underlie organelle integration remain poorly understood. The amoeba Paulinella chromatophora contains cyanobacterium-derived photosynthetic organelles, termed "chromatophores," that were acquired more recently (around 100 Ma ago). To explore the re-arrangement of an organellar proteome during its integration into a eukaryotic host cell, here we characterized the chromatophore proteome by protein mass spectrometry. Apparently, genetic control over the chromatophore has shifted substantially to the nucleus. Two classes of nuclear-encoded proteins-which differ in protein length-are imported into the chromatophore, most likely through independent pathways. Long imported proteins carry a putative, conserved N-terminal targeting signal, and many specifically fill gaps in chromatophore-encoded metabolic pathways or processes. Surprisingly, upon heterologous expression in a plant cell, the putative chromatophore targeting signal conferred chloroplast localization. This finding suggests common features in the protein import pathways of chromatophores and plastids, two organelles that evolved independently and more than 1 Ga apart from each other. By combining experimental data with in silico predictions, we provide a comprehensive catalog of almost 450 nuclear-encoded, chromatophore-targeted proteins. Interestingly, most imported proteins seem to derive from ancestral host genes, suggesting that the re-targeting of nuclear-encoded proteins that resulted from endosymbiotic gene transfers plays only a minor role at the onset of chromatophore integration.
    [Abstract] [Full Text] [Related] [New Search]