These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel De Novo KCND3 Mutation in a Japanese Patient with Intellectual Disability, Cerebellar Ataxia, Myoclonus, and Dystonia. Author: Kurihara M, Ishiura H, Sasaki T, Otsuka J, Hayashi T, Terao Y, Matsukawa T, Mitsui J, Kaneko J, Nishiyama K, Doi K, Yoshimura J, Morishita S, Shimizu J, Tsuji S. Journal: Cerebellum; 2018 Apr; 17(2):237-242. PubMed ID: 28895081. Abstract: Spinocerebellar ataxia 19/22 (SCA19/22) is a rare type of autosomal dominant SCA that was previously described in 11 families. We report the case of a 30-year-old Japanese man presenting with intellectual disability, early onset cerebellar ataxia, myoclonus, and dystonia without a family history. MRI showed cerebellar atrophy, and electroencephalograms showed paroxysmal sharp waves during hyperventilation and photic stimulation. Trio whole-exome sequencing analysis of DNA samples from the patient and his parents revealed a de novo novel missense mutation (c.1150G>A, p.G384S) in KCND3, the causative gene of SCA19/22, substituting for evolutionally conserved glycine. The mutation was predicted to be functionally deleterious by bioinformatic analysis. Although pure cerebellar ataxia is the most common clinical feature in SCA19/22 families, extracerebellar symptoms including intellectual disability and myoclonus are reported in a limited number of families, suggesting a genotype-phenotype correlation for particular mutations. Although autosomal recessive diseases are more common in patients with early onset sporadic cerebellar ataxia, the present study emphasizes that such a possibility of de novo mutation should be considered.[Abstract] [Full Text] [Related] [New Search]