These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: What are the driving forces for the proximal tubular H+ and Ca++ transport? The electrochemical gradient for Na+ and/or ATP. Author: Ullrich KJ, Frömter E, Gmaj P, Kinne R, Murer H. Journal: Curr Probl Clin Biochem; ; 8():170-7. PubMed ID: 28898. Abstract: The H+ ion secretion in the proximal tubule as revealed by the reabsorption of the glycodiazine buffer vanishes when the ambient solutions are sodium-free. The same holds for other Na+-dependent transport processes such as Ca++, phosphate, glucose and amino acid reabsorption. If Na+ transport is blocked by ouabain the latter transport processes are abolished, the secretion of H+ ions, however, remains unchanged suggesting H+ to be not exclusively driven by active Na+ transport. These observations agree with electrical measurements which show an electrogenic component of H+ secretion to exist in rat proximal tubule. In experiments with isolated membrane vesicles an electroneutral Na+/H+-exchange mechanism could be demonstrated in the brush border membrane and an ATP-driven Ca++ pumpt as well as Na+-Ca++ countertransport in the baso-lateral cell membrane. These data suggest that both, the Na+ gradient and ATP, are used to drive H+ ion secretion across the luminal brush border and Ca++ reabsorption across the baso-lateral cell side. The biochemical nature of the various systems and their relative importance for the transepithelial ion movement remain to be elucidated.[Abstract] [Full Text] [Related] [New Search]