These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of hotspots for NO and N2O production and consumption in counter- and co-diffusion biofilms for simultaneous nitrification and denitrification. Author: Kinh CT, Riya S, Hosomi M, Terada A. Journal: Bioresour Technol; 2017 Dec; 245(Pt A):318-324. PubMed ID: 28898826. Abstract: A membrane-aerated biofilm reactor (MABR) provides a counter-current substrate diffusion geometry in which oxygen is supplied from a gas-permeable membrane on which a biofilm is grown. This study hypothesized that an MABR would mitigate NO and N2O emissions compared with those from a conventional biofilm reactor (CBR). Two laboratory-scale reactors, representing an MABR and CBR, were operated by feeding synthetic industrial wastewater. The surficial nitrogen removal rate for the MABR [4.51±0.52g-N/(m2day)] was higher than that for the CBR [3.56±0.81g-N/(m2day)] (p<0.05). The abundance of β-proteobacterial ammonia-oxidizing bacteria in the MABR biofilm aerobic zone was high. The NO and N2O concentrations at the biofilm-liquid interface in the MABR were 0.0066±0.0014 and 0.01±0.0009mg-N/L, respectively, two and 28 times lower than those in the CBR. The NO and N2O production hotspots were closely located in the MABR aerobic zone.[Abstract] [Full Text] [Related] [New Search]