These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biomonitoring of 2,4,6-trinitrotoluene and degradation products in the marine environment with transplanted blue mussels (M. edulis). Author: Strehse JS, Appel D, Geist C, Martin HJ, Maser E. Journal: Toxicology; 2017 Sep 01; 390():117-123. PubMed ID: 28899748. Abstract: Since World War I considerable amounts of warfare material have been dumped at sea worldwide, but little is known about the fate of the explosive components in the marine environment. Sea dumped munitions are able to contaminate the surroundings because of the release of explosive chemicals due to corrosion and breaching or by detonation after blast-operations. This implies the risk of accumulation of toxic compounds in human and wildlife food chains. With the help of divers, we performed an active biomonitoring study with transplanted blue mussels (M. edulis) in a burdened area (Kolberger Heide, Germany) with explosive compounds near blast craters over an exposure time of 93days. With this biomonitoring system, we could show that blue mussels accumulate 2,4,6-trinitrotoluene (TNT) and its metabolites 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) in their tissues. In all mussels deployed at the ground, we found a body burden with 2-ADNT of 103.75±12.77ng/g wet weight and with 4-ADNT of 131.31±9.53ng/g wet weight. TNT itself has been found in six mussels with an average concentration of 31.04±3.26ng/g mussel wet weight. In the mussels positioned at one meter above the ground no TNT nor 2-ADNT could be detected, but 4-ADNT was found in all samples with an average concentration of 8.71±2.88ng/g mussel wet weight. To the best of our knowledge, this is the first study using blue mussels M. edulis as an active biomonitoring system for TNT and its metabolites 2-ADNT and 4-ADNT in a free field experiment in a burdened area. Moreover, with this system, we unequivocally proved that these toxic explosives accumulate in the marine biota resp. in the marine food chain, thereby posing a possible risk to the marine ecosphere and human health.[Abstract] [Full Text] [Related] [New Search]