These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protective effect of rutin against brain injury induced by acrylamide or gamma radiation: role of PI3K/AKT/GSK-3β/NRF-2 signalling pathway. Author: Thabet NM, Moustafa EM. Journal: Arch Physiol Biochem; 2018 May; 124(2):185-193. PubMed ID: 28906145. Abstract: This study was designed to evaluate the effect of rutin on PI3K/AKT-signalling in case of acrylamide or γ-radiation-induced neurotoxicity. To induce brain damage, animals were received acrylamide (25 mg/kg b.wt./orally/day) or 5 Gy of γ-radiation exposure accompanied with an administration of rutin (200 mg/kg b.wt./orally/day). Our data revealed that, compared to acrylamide or γ-radiation, rutin activated PI3K/AKT/GSK-3β/NRF-2-pathway through increased protein levels of p-PI3K, p-AKT and p-GSK-3β and up-regulated the expression of NRF-2. This was achieved by modulating MDA, GST, IL-1β, IL-6 and reduced the interference of ROS with IGF-1 and NGF stimulating the PI3K/AKT-signaling. Furthermore, histopathological examinations of brain tissues showed that rutin has modulated tissue architecture after acrylamide or γ-radiation induced tissue damage. It could be concluded that rutin provides protection effect against acrylamide or γ-radiation-induced neurotoxicity via activation of the PI3K/AKT/GSK-3β/NRF-2-pathway by altering the phosphorylation state through its ability to scavenge free radicals generation, modulating gene expression and its anti-inflammatory effects.[Abstract] [Full Text] [Related] [New Search]