These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers. Author: Buffet C, Hecale-Perlemoine K, Bricaire L, Dumont F, Baudry C, Tissier F, Bertherat J, Cochand-Priollet B, Raffin-Sanson ML, Cormier F, Groussin L. Journal: PLoS One; 2017; 12(9):e0184861. PubMed ID: 28910386. Abstract: BACKGROUND: Molecular alterations of the MAPK pathway are frequently observed in papillary thyroid carcinomas (PTCs). It leads to a constitutive activation of the signalling pathway through an increase in MEK and ERK phosphorylation. ERK is negatively feedback-regulated by Dual Specificity Phosphatases (DUSPs), especially two ERK-specific DUSPs, DUSP5 (nuclear) and DUSP6 (cytosolic). These negative MAPK regulators may play a role in thyroid carcinogenesis. METHODS: MAPK pathway activation was analyzed in 11 human thyroid cancer cell lines. Both phosphatases were studied in three PCCL3 rat thyroid cell lines that express doxycycline inducible PTC oncogenes (RET/PTC3, H-RASV12 or BRAFV600E). Expression levels of DUSP5 and DUSP6 were quantified in 39 human PTCs. The functional role of DUSP5 and DUSP6 was investigated through their silencing in two human BRAFV600E carcinoma cell lines. RESULTS: BRAFV600E human thyroid cancer cell lines expressed higher phospho-MEK levels but not higher phospho-ERK levels. DUSP5 and DUSP6 are specifically induced by the MEK-ERK pathway in the three PTC oncogenes inducible thyroid cell lines. This negative feedback loop explains the tight regulation of p-ERK levels. DUSP5 and DUSP6 mRNA are overexpressed in human PTCs, especially in BRAFV600E mutated PTCs. DUSP5 and/or DUSP6 siRNA inactivation did not affect proliferation in two BRAFV600E mutated cell lines, which may be explained by a compensatory increase in other phosphatases. In the light of this, we observed a marked DUSP6 upregulation upon DUSP5 inactivation. Despite this, DUSP5 and DUSP6 positively control cell migration and invasion. CONCLUSIONS: Our results are in favor of a stronger activation of the MAPK pathway in BRAFV600E PTCs. DUSP5 and DUSP6 have pro-tumorigenic properties in two BRAFV600E PTC cell line models.[Abstract] [Full Text] [Related] [New Search]