These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cationic and Anionic Disorder in CZTSSe Kesterite Compounds: A Chemical Crystallography Study. Author: Bais P, Caldes MT, Paris M, Guillot-Deudon C, Fertey P, Domengès B, Lafond A. Journal: Inorg Chem; 2017 Oct 02; 56(19):11779-11786. PubMed ID: 28915017. Abstract: The cationic and anionic disorder in the Cu2ZnSnSe4-Cu2ZnSnS4 (CZTSe-CZTS) system has been investigated through a chemical crystallography approach including X-ray diffraction (in conventional and resonant setup), 119Sn and 77Se NMR spectroscopy, and high-resolution transmission electron microscopy (HRTEM) techniques. Single-crystal XRD analysis demonstrates that the studied compounds behave as a solid solution with the kesterite crystal structure in the whole S/(S + Se) composition range. As previously reported for pure sulfide and pure selenide compounds, the 119Sn NMR spectroscopy study gives clear evidence that the level of Cu/Zn disorder in mixed S/Se compounds depends on the thermal history of the samples (slow cooled or quenched). This conclusion is also supported by the investigation of the 77Se NMR spectra. The resonant single-crystal XRD technique shows that regardless of the duration of annealing step below the order-disorder critical temperature the ordering is not a long-range phenomenon. Finally, for the very first time, HREM images of pure selenide and mixed S/Se crystals clearly show that these compounds have different microstructures. Indeed, only the mixed S/Se compound exhibits a mosaic-type contrast which could be the sign of short-range anionic order. Calculated images corroborate that HRTEM contrast is highly dependent on the nature of the anion as well as on the local anionic order.[Abstract] [Full Text] [Related] [New Search]