These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of membrane-bound dehydrogenases from a mother of vinegar metagenome in Gluconobacter oxydans.
    Author: Peters B, Mientus M, Kostner D, Daniel R, Liebl W, Ehrenreich A.
    Journal: Appl Microbiol Biotechnol; 2017 Nov; 101(21):7901-7912. PubMed ID: 28916850.
    Abstract:
    Acetic acid bacteria are well-known for their membrane-bound dehydrogenases rapidly oxidizing a variety of substrates in the periplasm. Since many acetic acid bacteria have not been successfully cultured in the laboratory yet, studying membrane-bound dehydrogenases directly from a metagenome of vinegar microbiota seems to be a promising way to identify novel variants of these enzymes. To this end, DNA from a mother of vinegar was isolated, sequenced, and screened for membrane-bound dehydrogenases using an in silico approach. Six metagenomic dehydrogenases were successfully expressed using an expression vector with native promoters in the acetic acid bacterium strain Gluconobacter oxydans BP.9, which is devoid of its major native membrane-bound dehydrogenases. Determining the substrates converted by these enzymes, using a whole-cell DCPIP assay, revealed one glucose dehydrogenase with an enlarged substrate spectrum additionally oxidizing aldoheptoses, D-ribose and aldotetroses, one polyol dehydrogenase with an extreme diminished spectrum but distinguishing cis and trans-1,2-cyclohexandiol and a completely new secondary alcohol dehydrogenase, which oxidizes secondary alcohols with a hydroxyl group at position 2, as long as no primary hydroxyl group is present. Three further dehydrogenases were found with substrate spectra similar to known dehydrogenases of G. oxydans 621H.
    [Abstract] [Full Text] [Related] [New Search]