These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular Packing, Hydrogen Bonding, and Fast Dynamics in Lysozyme/Trehalose/Glycerol and Trehalose/Glycerol Glasses at Low Hydration.
    Author: Lerbret A, Affouard F.
    Journal: J Phys Chem B; 2017 Oct 12; 121(40):9437-9451. PubMed ID: 28920435.
    Abstract:
    Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast (∼picosecond-nanosecond, ps-ns) and small-amplitude (∼Å) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme/trehalose/glycerol (LTG) and trehalose/glycerol (TG) mixtures at low glycerol and water concentrations. Upon addition of glycerol and/or water, the glass transition temperature, Tg, of LTG and TG mixtures decreases, the molecular packing of glasses is improved, and the mean-square displacements (MSDs) of lysozyme and trehalose either decrease or increase, depending on the time scale and on the temperature considered. A detailed analysis of the hydrogen bonds (HBs) formed between species reveals that water and glycerol may antiplasticize the fast dynamics of lysozyme and trehalose by increasing the total number and/or the strength of the HBs they form in glassy matrices.
    [Abstract] [Full Text] [Related] [New Search]