These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: KATP channel block inhibits the Toll-like receptor 2-mediated stimulation of NF-κB by suppressing the activation of Akt, mTOR, JNK and p38-MAPK. Author: Jeong Nam Y, Kim A, Sung Lee M, Suep Sohn D, Soo Lee C. Journal: Eur J Pharmacol; 2017 Nov 15; 815():190-201. PubMed ID: 28923349. Abstract: Changes in the KATP channel activity have been shown to regulate inflammation and immune responses. Using human keratinocytes, we investigated the effect of KATP channel inhibition on inflammatory mediator production in relation to the Toll like receptor-2-mediated-Akt, mTOR and NF-κB pathways, as well as JNK and p38-MAPK, which regulate the transcription genes involved in immune and inflammatory responses. 5-Hydroxydecanoate (a selective KATP channel blocker), glibenclamide (a cell surface and mitochondrial KATP channel inhibitor), the Akt inhibitor, rapamycin, Bay 11-7085 and N-acetylcysteine reduced the lipoteichoic acid- or peptidoglycan-induced production of cytokines and chemokines, and production of reactive oxygen species and increased the levels and activities of Kir 6.2, NF-κB, phosphorylated-Akt and mTOR, and the activation of JNK and p38-MAPK in keratinocytes. Inhibitors of c-JNK (SP600125) and p38-MAPK (SB203580) attenuated the lipoteichoic acid- or peptidoglycan-induced production of inflammatory mediators, the activation of the JNK and p38-MAPK, and the production of reactive oxygen species in keratinocytes. The results show that KATP channel blockers may reduce the bacterial component-stimulated production of inflammatory mediators in keratinocytes by suppressing the Toll-like receptor-2-mediated activation of the Akt, mTOR and NF-κB pathways, as well as JNK and p38-MAPK. The suppressive effect of KATP channel blockers appears to be achieved by the inhibition of reactive oxygen species production.[Abstract] [Full Text] [Related] [New Search]