These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multi-azole-resistant strains of Cryptococcus neoformans var. grubii isolated from a FLZ-resistant strain by culturing in medium containing voriconazole. Author: Kano R, Okubo M, Hasegawa A, Kamata H. Journal: Med Mycol; 2017 Nov 01; 55(8):877-882. PubMed ID: 28927230. Abstract: A Cryptococcus neoformans var. grubii strain, NUBS14020, was the first fluconazole (FLZ)-resistant strain isolated from a feline cryptococcosis. Subsequent work demonstrated that multi-azole-resistant strains are readily isolated from FLZ-resistant strains by culturing in medium containing voriconazole (VRZ). The resulting clones were assessed for mutation and expression of known target genes, including the loci encoding lanosterol 14-α demethylase (ERG11), an ATP-binding cassette (ABC) transporter (AFR1), or a multidrug efflux pump (MEP); mutation and/or overexpression of these genes is known to be associated with azole resistance. We also examined the interaction between an efflux blocker (FK506, calcineurin inhibitor) and VRZ in the multi-azole-resistant strains. The ERG11 genes from multi-azole-resistant strains encoded a protein with a G344S substitution. Expression levels of AFR1, ERG11, and MEP in the multi-azole-resistant strains were not higher than those in the VRZ-susceptible parent strain (NUBS14020) when cultured in Sabourad's dextrose broth containing VRZ. Synergistic effects between FK506 and VRC were observed in all of the multi-azole-resistant strains. The minimal inhibitory concentrations (MICs) of the combination of VRZ and FK506 in multi-azole-resistant strains were 4 to 8 times lower that the MICs of VRZ alone. To the best of our knowledge, this work represents the first report that multi-azole-resistant strains of C. neoformans encode a G344S substitution in Erg11p. Further investigation will be needed to determine the mechanism of multi-azole resistance in C. neoformans, given that feline cryptococcosis due to multi- azole-resistant strains is readily transmitted from cats to humans.[Abstract] [Full Text] [Related] [New Search]