These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxygen saturation increases over the course of the night in mountaineers at high altitude (3050-6354 m). Author: Tannheimer M, van der Spek R, Brenner F, Lechner R, Steinacker JM, Treff G. Journal: J Travel Med; 2017 Sep 01; 24(5):. PubMed ID: 28931132. Abstract: BACKGROUND: Blood oxygen saturation (SpO 2 ) is frequently measured to determine acclimatization status in high-altitude travellers. However, little is known about nocturnal time course of SpO 2 (SpO 2N ), but alterations in SpO 2N might be practically relevant as well. To this end, we describe the time-course of SpO 2N in mountaineers at high altitude. METHODS: SpO 2N was continuously measured in ten male mountaineers during a three-week expedition in Peru (3,050-6,354m). Average SpO 2N of the first (SpO 2N1 ) and second half (SpO 2N2 ) of an individual's sleep duration was calculated from 2h intervals of uninterrupted sleep. Heart rate oscillations and sleep dairies were used to exclude periods of wakefulness. SpO 2 was also measured at rest in the morning. RESULTS: SpO 2N significantly increased from SpO 2N1 to SpO 2N2 . The magnitude of this increase (ΔSpO 2 ) was reduced with time spent at altitude. On night 1 (3,050m) SpO 2 increased from 83.4% (N1) to 86.3% (N2). At the same location on night 21, SpO 2 increased from 88.3% to 90.1%, which is a relative change of 4.7% and 2.0%, respectively. This pattern of increase in SpO 2N was perturbed when individual acclimatization was poor or altitude was extreme (5630m). SpO 2N was significantly lower than SpO 2 at rest in the morning. CONCLUSIONS: This study is the first to demonstrate an increase of SpO 2 during the night in mountaineers at high altitude (3,050-6,354m) with high consistency between and within subjects. The magnitude of ΔSpO 2N decreased as acclimatization improved, suggesting that these changes in ΔSpO 2 between nights might be a valuable indicator of individual acclimatization. In addition, the failure of any increase in SpO 2N during the night might indicate insufficient acclimatization. Even though underlying mechanisms for the nocturnal increase remain unclear, the timing of SpO 2N measurement is obviously of utmost importance for its interpretation. Finally our study illustrates the detailed effects of ventilatory acclimatization over several weeks.[Abstract] [Full Text] [Related] [New Search]