These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of light and food on the circadian clock in liver of rainbow trout, Oncorhynchus mykiss.
    Author: Hernández-Pérez J, Míguez JM, Naderi F, Soengas JL, López-Patiño MA.
    Journal: Chronobiol Int; 2017; 34(9):1259-1272. PubMed ID: 28933632.
    Abstract:
    Several reports support the existence of multiple peripheral oscillators in fish, which may be able to modulate the rhythmic functions developed by those tissues hosting them. Thus, a circadian oscillator has been proposed to be located within fish liver. In this vertebrate group, the role played by the circadian system in regulating metabolic processes in liver is mostly unknown. We, therefore investigated the liver of rainbow trout (Oncorhynchus mykiss) as a potential element participating in the regulation of circadian rhythms in fish by hosting a functional circadian oscillator. The presence and expression pattern of main components of the circadian molecular machinery (clock1a, bmal1, per1 and rev-erbβ-like) were assessed. Furthermore, the role of environmental cues such as light and food, and their interaction in order to modulate the circadian oscillator was also assessed by exposing animals to constant conditions (absence of light for 48 h, and/or a 4 days fasting period). Our results demonstrate the existence of a functional circadian oscillator within trout liver, as demonstrated by significant rhythms of all clock genes assessed, independently of the environmental conditions studied. In addition, the daily profile of mRNA abundance of clock genes is influenced by both light (mainly clock1a and per1) and food (rev-erbβ-like), which is indicative of an interaction between both synchronizers. Our results point to rev-erbβ-like as possible mediator between the influence of light and food on the circadian oscillator within trout liver, since its daily profile is influenced by both light and food, thus affecting that of bmal1.
    [Abstract] [Full Text] [Related] [New Search]