These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: miR-539 inhibits human colorectal cancer progression by targeting RUNX2.
    Author: Wen D, Li S, Jiang W, Zhu J, Liu J, Zhao S.
    Journal: Biomed Pharmacother; 2017 Nov; 95():1314-1320. PubMed ID: 28938522.
    Abstract:
    Emerging evidence has shown that microRNAs (miRNAs) such as miR-539 play critical roles in carcinogenesis and progression in many types of cancer, including human colorectal cancer (CRC). However, the roles and underlying mechanism of miR-539 in CRC have not been well identified. The aims of this study were, therefore, to investigate the regulatory role and potential mechanism of miR-539 in human CRC. Here, we show that miR-539 expression is downregulated in CRC tissues and cell lines. The expression level of miR-539 is inversely associated with advanced clinical stage and lymph node metastasis. In vitro studies reveal that overexpression of miR-539 inhibits CRC cell proliferation and colony formation as well as migration and invasion; in vivo results demonstrate that overexpression of miR-539 dramatically reduces CRC xenograft tumor growth. Moreover, runt-related transcription factor 2 (RUNX2), a known oncogene, was identified as a target transcript of miR-539 in CRC by bioinformatic analysis, luciferase reporter assay, qPCR, and western blotting. RUNX2 expression levels were upregulated and inversely correlated with miR-539 expression in CRC tissues. Importantly, overexpression of RUNX2 without the 3'-untranslated region that is targeted by miR-539 partially reversed the inhibitory effect of miR-539 on CRC cell proliferation, migration, and invasion. Collectively, these findings demonstrate that miR-539 functions as a tumor suppressor in CRC, at least in part, by targeting RUNX2, supporting the targeting of the novel miR-539 as a potentially effective therapeutic approach for treatment of CRC.
    [Abstract] [Full Text] [Related] [New Search]