These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cadmium uptake and zinc-cadmium antagonism in Australian tropical rock oysters: Potential solutions for oyster aquaculture enterprises.
    Author: Munksgaard NC, Burchert S, Kaestli M, Nowland SJ, O'Connor W, Gibb KS.
    Journal: Mar Pollut Bull; 2017 Oct 15; 123(1-2):47-56. PubMed ID: 28938999.
    Abstract:
    Variable and occasionally high concentrations of cadmium in wild oysters at a remote location with the potential to develop aquaculture enterprises motivated research into the distribution and sources of metals in oysters, seawater, sediment, suspended solids and phytoplankton. Saccostrea mytiloides and Saccostrea mordax contained cadmium concentrations exceeding the food standard maximum level (ML) at three of four sites. At one site with high zinc levels in sediment, oyster cadmium levels were below the ML. Metal levels in seawater were not correlated with cadmium levels in oysters but high cadmium/zinc ratios were measured in Trichodesmium erythraeum blooms. We suggest that oysters accumulate cadmium mainly from annual phytoplankton blooms except at sites where zinc availability is sufficiently high to prevent uptake though a mechanism of antagonistic exclusion. Knowledge of the source and uptake mechanisms of cadmium in oysters should lead to new management strategies to reduce cadmium levels in farmed oysters.
    [Abstract] [Full Text] [Related] [New Search]