These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exon-intron organization and sequence comparison of human and murine T11 (CD2) genes.
    Author: Diamond DJ, Clayton LK, Sayre PH, Reinherz EL.
    Journal: Proc Natl Acad Sci U S A; 1988 Mar; 85(5):1615-9. PubMed ID: 2894031.
    Abstract:
    Genomic DNA clones containing the human and murine genes coding for the 50-kDa T11 (CD2) T-cell surface glycoprotein were characterized. The human T11 gene is approximately equal to 12 kilobases long and comprised of five exons. A leader exon (L) contains the 5'-untranslated region and most of the nucleotides defining the signal peptide [amino acids (aa) -24 to -5]. Two exons encode the extracellular segment; exon Ex1 is 321 base pairs (bp) long and codes for four residues of the leader peptide and aa 1-103 of the mature protein, and exon Ex2 is 231 bp long and encodes aa 104-180. Exon TM is 123 bp long and codes for the single transmembrane region of the molecule (aa 181-221). Exon C is a large 765-bp exon encoding virtually the entire cytoplasmic domain (aa 222-327) and the 3'-untranslated region. The murine T11 gene has a similar organization with exon-intron boundaries essentially identical to the human gene. Substantial conservation of nucleotide sequences between species in both 5'- and 3'-gene flanking regions equivalent to that among homologous exons suggests that murine and human genes may be regulated in a similar fashion. The probable relationship of the individual T11 exons to functional and structural protein domains is discussed.
    [Abstract] [Full Text] [Related] [New Search]