These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Therapeutic Vesicular Nanoreactors with Tumor-Specific Activation and Self-Destruction for Synergistic Tumor Ablation.
    Author: Li J, Dirisala A, Ge Z, Wang Y, Yin W, Ke W, Toh K, Xie J, Matsumoto Y, Anraku Y, Osada K, Kataoka K.
    Journal: Angew Chem Int Ed Engl; 2017 Nov 06; 56(45):14025-14030. PubMed ID: 28940903.
    Abstract:
    Polymeric nanoreactors (NRs) have distinct advantages to improve chemical reaction efficiency, but the in vivo applications are limited by lack of tissue-specificity. Herein, novel glucose oxidase (GOD)-loaded therapeutic vesicular NRs (theraNR) are constructed based on a diblock copolymer containing poly(ethylene glycol) (PEG) and copolymerized phenylboronic ester or piperidine-functionalized methacrylate (P(PBEM-co-PEM)). Upon systemic injection, theraNR are inactive in normal tissues. At a tumor site, theraNR are specifically activated by the tumor acidity via improved permeability of the membranes. Hydrogen peroxide (H2 O2 ) production by the catalysis of GOD in theraNR increases tumor oxidative stress significantly. Meanwhile, high levels of H2 O2 induce self-destruction of theraNR releasing quinone methide (QM) to deplete glutathione and suppress the antioxidant ability of cancer cells. Finally, theraNR efficiently kill cancer cells and ablate tumors via the synergistic effect.
    [Abstract] [Full Text] [Related] [New Search]