These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Holon Wigner Crystal in a Lightly Doped Kagome Quantum Spin Liquid.
    Author: Jiang HC, Devereaux T, Kivelson SA.
    Journal: Phys Rev Lett; 2017 Aug 11; 119(6):067002. PubMed ID: 28949592.
    Abstract:
    We address the problem of a lightly doped spin liquid through a large-scale density-matrix renormalization group study of the t-J model on a kagome lattice with a small but nonzero concentration δ of doped holes. It is now widely accepted that the undoped (δ=0) spin-1/2 Heisenberg antiferromagnet has a spin-liquid ground state. Theoretical arguments have been presented that light doping of such a spin liquid could give rise to a high temperature superconductor or an exotic topological Fermi liquid metal. Instead, we infer that the doped holes form an insulating charge-density wave state with one doped hole per unit cell, i.e., a Wigner crystal. Spin correlations remain short ranged, as in the spin-liquid parent state, from which we infer that the state is a crystal of spinless holons, rather than of holes. Our results may be relevant to kagome lattice herbertsmithite upon doping.
    [Abstract] [Full Text] [Related] [New Search]