These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of epicatechins derived from green tea with rat hepatic cytochrome P-450.
    Author: Wang ZY, Das M, Bickers DR, Mukhtar H.
    Journal: Drug Metab Dispos; 1988; 16(1):98-103. PubMed ID: 2894963.
    Abstract:
    Green tea has been used for generations in China and Asia as an antipyretic and diuretic. Prior studies have shown that extracts of green tea inhibit the mutagenicity of polycyclic aromatic hydrocarbons and aflatoxin B1. In this study, we investigated the interaction of certain flavonoid components of green tea epicatechin derivatives including (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG), and (-)-epigallocatechin-3-gallate (EGCG) with rat hepatic microsomal cytochrome P-450 (P-450). The addition of EC, EGC, ECG, and EGCG to hepatic microsomes prepared from phenobarbital (PB)-treated rats resulted in spectral changes characterized by absorbance maxima at 420 nm and minima at 380 nm, typical of modified Type II (reverse Type I) binding. Of the epicatechin derivatives, EGCG and ECG showed greater spectral change with oxidized P-450 and time- and concentration-dependent inhibition of the binding of carbon monoxide to dithionite-reduced cytochrome P-450. The addition of EC, EGC, ECG, and EGCG to microsomes prepared from control, PB- or 3-methylcholanthrene-treated rats resulted in a dose-dependent inhibition of cytochrome P-450-dependent aryl hydrocarbon hydroxylase, 7-ethoxycoumarin O-deethylase, and 7-ethoxyresorufin O-deethylase activities. EGCG was the most potent in this regard. Green tea polyphenols and epicatechin derivatives also significantly inhibited NADPH-cytochrome c reductase activity. An examination of the structure activity relationship of epicatechin derivatives suggests that the inhibitory effect on the microsomal enzyme system may be due to the galloyl groups or hydroxyl groups on the molecule. Our data indicate that these extracts of green tea may have potential as anticarcinogens.
    [Abstract] [Full Text] [Related] [New Search]