These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rapid kV-switching single-source dual-energy CT ex vivo renal calculi characterization using a multiparametric approach: refining parameters on an expanded dataset.
    Author: Kriegshauser JS, Paden RG, He M, Humphreys MR, Zell SI, Fu Y, Wu T, Sugi MD, Silva AC.
    Journal: Abdom Radiol (NY); 2018 Jun; 43(6):1439-1445. PubMed ID: 28952007.
    Abstract:
    PURPOSE: We aimed to determine the best algorithms for renal stone composition characterization using rapid kV-switching single-source dual-energy computed tomography (rsDECT) and a multiparametric approach after dataset expansion and refinement of variables. METHODS: rsDECT scans (80 and 140 kVp) were performed on 38 ex vivo 5- to 10-mm renal stones composed of uric acid (UA; n = 21), struvite (STR; n = 5), cystine (CYS; n = 5), and calcium oxalate monohydrate (COM; n = 7). Measurements were obtained for 17 variables: mean Hounsfield units (HU) at 11 monochromatic keV levels, effective Z, 2 iodine-water material basis pairs, and 3 mean monochromatic keV ratios (40/140, 70/120, 70/140). Analysis included using 5 multiparametric algorithms: Support Vector Machine, RandomTree, Artificial Neural Network, Naïve Bayes Tree, and Decision Tree (C4.5). RESULTS: Separating UA from non-UA stones was 100% accurate using multiple methods. For non-UA stones, using a 70-keV mean cutoff value of 694 HU had 100% accuracy for distinguishing COM from non-COM (CYS, STR) stones. The best result for distinguishing all 3 non-UA subtypes was obtained using RandomTree (15/17, 88%). CONCLUSIONS: For stones 5 mm or larger, multiple methods can distinguish UA from non-UA and COM from non-COM stones with 100% accuracy. Thus, the choice for analysis is per the user's preference. The best model for separating all three non-UA subtypes was 88% accurate, although with considerable individual overlap between CYS and STR stones. Larger, more diverse datasets, including in vivo data and technical improvements in material separation, may offer more guidance in distinguishing non-UA stone subtypes in the clinical setting.
    [Abstract] [Full Text] [Related] [New Search]