These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rhesus θ-Defensin-1 Attenuates Endotoxin-induced Acute Lung Injury by Inhibiting Proinflammatory Cytokines and Neutrophil Recruitment.
    Author: Jayne JG, Bensman TJ, Schaal JB, Park AYJ, Kimura E, Tran D, Selsted ME, Beringer PM.
    Journal: Am J Respir Cell Mol Biol; 2018 Mar; 58(3):310-319. PubMed ID: 28954201.
    Abstract:
    Acute lung injury (ALI) is a clinical syndrome characterized by acute respiratory failure and is associated with substantial morbidity and mortality. Rhesus θ-defensin (RTD)-1 is an antimicrobial peptide with immunomodulatory activity. As airway inflammation and neutrophil recruitment and activation are hallmarks of ALI, we evaluated the therapeutic efficacy of RTD-1 in preclinical models of the disease. We investigated the effect of RTD-1 on neutrophil chemotaxis and macrophage-driven pulmonary inflammation with human peripheral neutrophils and LPS-stimulated murine alveolar macrophage (denoted MH-S) cells. Treatment and prophylactic single escalating doses were administered subcutaneously in a well-established murine model of direct endotoxin-induced ALI. We assessed lung injury by histopathology, pulmonary edema, inflammatory cell recruitment, and inflammatory cytokines/chemokines in the BAL fluid. In vitro studies demonstrated that RTD-1 suppressed CXCL8-induced neutrophil chemotaxis, TNF-mediated neutrophil-endothelial cell adhesion, and proinflammatory cytokine release in activated murine alveolar immortalized macrophages (MH-S) cells. Treatment with RTD-1 significantly inhibited in vivo LPS-induced ALI by reducing pulmonary edema and histopathological changes. Treatment was associated with dose- and time-dependent inhibition of proinflammatory cytokines (TNF, IL-1β, and IL-6), peroxidase activity, and neutrophil recruitment into the airways. Antiinflammatory effects were demonstrated in animals receiving RTD-1 up to 12 hours after LPS challenge. Notably, subcutaneously administered RTD-1 demonstrates good peptide stability as demonstrated by the long in vivo half-life. Taken together, these studies demonstrate that RTD-1 is efficacious in an experimental model of ALI through inhibition of neutrophil chemotaxis and adhesion, and the attenuation of proinflammatory cytokines and gene expression from alveolar macrophages.
    [Abstract] [Full Text] [Related] [New Search]