These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Integration of EGFR and LIN-12/Notch Signaling by LIN-1/Elk1, the Cdk8 Kinase Module, and SUR-2/Med23 in Vulval Precursor Cell Fate Patterning in Caenorhabditis elegans. Author: Underwood RS, Deng Y, Greenwald I. Journal: Genetics; 2017 Dec; 207(4):1473-1488. PubMed ID: 28954762. Abstract: Six initially equivalent, multipotential Vulval Precursor Cells (VPCs) in Caenorhabditis elegans adopt distinct cell fates in a precise spatial pattern, with each fate associated with transcription of different target genes. The pattern is centered on a cell that adopts the "1°" fate through Epidermal Growth Factor Receptor (EGFR) activity, and produces a lateral signal composed of ligands that activate LIN-12/Notch in the two flanking VPCs to cause them to adopt "2°" fate. Here, we investigate orthologs of a transcription complex that acts in mammalian EGFR signaling-lin-1/Elk1, sur-2/Med23, and the Cdk8 Kinase module (CKM)-previously implicated in aspects of 1° fate in C. elegans and show they act in different combinations for different processes for 2° fate. When EGFR is inactive, the CKM, but not SUR-2, helps to set a threshold for LIN-12/Notch activity in all VPCs. When EGFR is active, all three factors act to resist LIN-12/Notch, as revealed by the reduced ability of ectopically-activated LIN-12/Notch to activate target gene reporters. We show that overcoming this resistance in the 1° VPC leads to repression of lateral signal gene reporters, suggesting that resistance to LIN-12/Notch helps ensure that P6.p becomes a robust source of the lateral signal. In addition, we show that sur-2/Med23 and lin-1/Elk1, and not the CKM, are required to promote endocytic downregulation of LIN-12-GFP in the 1° VPC. Finally, our analysis using cell fate reporters reveals that both EGFR and LIN-12/Notch signal transduction pathways are active in all VPCs in lin-1/Elk1 mutants, and that lin-1/Elk1 is important for integrating EGFR and lin-12/Notch signaling inputs in the VPCs so that the proper gene complement is transcribed.[Abstract] [Full Text] [Related] [New Search]